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We investigate the traditional kinetic flux vector splitting (KFVS) and BGK schemes for the
compressible Euler equations. First, based on a careful study of the behavior of the discrete
physical variables across the contact discontinuity, we analyze quantitatively the mecha-
nism of inducing spurious oscillations of the velocity and pressure in the vicinity of the
contact discontinuity for the first-order KFVS and BGK schemes. Then, with the help of this
analysis, we propose a first-order modified KFVS (MKFVS) scheme which is oscillation-free
in the vicinity of the contact discontinuity, provided certain consistent conditions are sat-
isfied. Moreover, by using piecewise linear reconstruction and van Leer’s limiter, the first-
order MKFVS scheme is extended to a second-order one, consequently, a nonoscillatory
second-order MKFVS scheme is constructed. Finally, by combing the MKFVS schemes with
the c-model, we successfully extend the MKFVS schemes to multi-flows, and propose
therefore a first- and second-order MKFVS schemes for multi-fluid computations, which
are nonoscillatory across fluid interfaces. A number of numerical examples presented in
this paper validate the theoretic analysis and demonstrate the good performance of the
MKFVS schemes in simulation of contact discontinuities for both single- and multi-fluids.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

In the past years the development of Boltzmann-type schemes for the simulation of compressible fluids has attracted
much attention, and significant progress has been made in their construction and analysis. Also, the success of such schemes
has appeared in a wide range of engineering applications, see for example, [5,6,10–14,16,17,19,21]. Among the Boltzmann-
type schemes, the equilibrium-flux method (EFM) has been intensively studied [16]. EFM is flux splitting and is also referred
to as a kinetic flux vector splitting (KFVS) scheme [16]. In fact, it is easy to see that the EFM and KFVS schemes are identical.
The KFVS scheme is composed of two steps. Firstly, the free transport equation or the collisionless Boltzmann equation is
solved in the gas evolution stage for the flux evaluation. Then, the collision part is implicitly implemented inside each cell
through the preparation of a new equilibrium state inside each cell at the beginning of the next time step. Also, the KFVS
scheme has been successfully applied to solving numerically various problems, see [3,4,8,9,14,16,17], for example. Two of
the advantages of the KFVS scheme for the Euler equations are robust and Riemann-solver free, we do not need to find
an exact or approximate Riemann solver. On the other hand, the KFVS scheme is based on the collisionless Boltzmann equa-
tion which could not capture the real gas dynamical property of the Euler equations (cf. [20, Chapters 3 and 4]). Although
artificial collisions are added in the projection stage, spurious oscillations across the contact discontinuity have still been
observed for the KFVS scheme, see the analysis in Section 2 and the numerical examples in Section 5.
. All rights reserved.
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With the inclusion of the Boltzmann collision model in the flux evaluation process, the gas-kinetic BGK scheme has been
proposed [15,22], which differs from the KFVS scheme mainly in the inclusion of particle collisions in the gas evolution stage.
The BGK scheme makes use of the local integral solution of the collisional BGK model to compute a time-dependent gas dis-
tribution function at a cell interface and to obtain the numerical fluxes in the gas evolution stage. Since the BGK model is a
statistical model, the particle transport and collision are coupled in the whole gas evolution process, and the particle collision
time controls the physical dissipative coefficients in the macroscopic equations. Since the gas evolution is associated with a
relaxation process, i.e., from a non-equilibrium state to an equilibrium one, the entropy condition is satisfied by the BGK
scheme. Based on the Chapman–Enskog expansion, from the gas-kinetic BGK model the Euler as well as the Navier–Stokes
equations can be derived. In the smooth flow region, as the flow structure can be well resolved by the numerical cell size, the
BGK scheme goes back to the Lax–Wendroff-type method for the compressible Navier–Stokes equations. In the discontinuity
region, a delicate dissipative mechanism due to both kinematic and dynamic dissipation in the BGK scheme presents a stable
and crisp shock transition, see [13,21]. For the BGK schemes, however, as we will see from the analysis in Section 2 and the
numerical examples in Section 5, spurious oscillations across the contact discontinuity can still be observed and will not van-
ish as the accuracy is improved. Such spurious oscillation phenomenon has been also observed and analyzed for certain
Godunov-type schemes, see, for example, [1,2].

In this paper, we first analyze the mechanism of inducing oscillations for the first-order KFVS and BGK schemes and find
the (consistent) conditions that enable the contact discontinuity to still remain a contact discontinuity. Then, based on this
analysis, we propose a first-order modified KFVS (MKFVS) scheme that is oscillation-free across the contact discontinuity.
Moreover, by using piecewise linear reconstruction and van Leer’s limiter, the first-order MKFVS scheme is extended to a
second-order one, and consequently, we obtain a nonoscillatory second-order MKFVS scheme. Finally, by combing the
MKFVS schemes with the c-model which tracks the motion of a fluid interface, we successfully extend the MKFVS schemes
to multi-flows, and propose therefore a first- and second-order MKFVS schemes for multi-fluid computations, which are
nonoscillatory across fluid interfaces. A number of one- and two-dimensional numerical tests are presented which validate
the theoretic analysis and demonstrate the good performance of the MKFVS schemes in simulation of the contact disconti-
nuity for both single- and multi-fluids.

The paper is organized as follows: In Section 2 we analyze numerical errors of the first-order KFVS and BGK schemes near
contact discontinuities, and with the help of this analysis, we propose our first- and second-order nonoscillatory MKFVS
schemes in Section 3. In Section 4, the MKFVS schemes of first- and second-order are successfully extend to multi-flows,
resulting in a first- and second-order nonoscillatory MKFVS schemes for multi-fluid simulations. Finally, in Section 5 a num-
ber of one- and two-dimensional single- and multi-fluid numerical experiments are presented to compare three schemes:
the KFVS, BGK and MKFVS schemes of first- and second-order. The numerical results validate the accuracy and non-oscilla-
tion of the MKFVS in computation of contact discontinuities for both single- and multi-fluids.

2. Error analysis for the KFVS and BGK schemes

In this section we will analyze numerical errors of the first-order KFVS and BGK schemes across the contact discontinuity.
For simplicity, we assume that the velocity and pressure are uniform throughout the computational grid. The purpose in this
section is to find conditions that enable the contact discontinuity to still remain a contact discontinuity. The basic idea in the
analysis, inspired by the work of Abgrall [1], is to compare carefully the value of the conservative variables across the contact
discontinuity at both nth and (n + 1)th time steps, and try to find the quantity which induces oscillations. For the sake of clear
presentation, we restrict our analysis to the one-dimensional case.

The one-dimensional compressible Euler equations, consisting of conservation of mass, momentum and energy, can be
written in the following conservation form:
@ ~W
@t
þ @Fð~WÞ

@x
¼ 0; ð2:1Þ
where
~W ¼ ðq;qU;qEÞT ; Fð~WÞ ¼ ðqU;qU2 þ P;qEU þ PUÞT ; P ¼ ðc� 1Þqe ¼ ðc� 1Þ qE� 1
2
qU2

� �
ð2:2Þ
and q;U; E; P and c denote the density, velocity, total energy, pressure, internal energy and the ratio of specific heats,
respectively.

In order to quantitatively analyze spurious oscillations across the contact discontinuity, we consider the initial value
problem for (2.1) and (2.2) with the following (specific) initial data, such that the solution of (2.1)–(2.3) consists of the con-
tact discontinuity only
~Wðx;0Þ ¼
ðqL;qLUL;qLELÞ; x < 0;
ðqR;qRUR;qRERÞ; x > 0;

�
ð2:3Þ
where
qL–qR; UL ¼ UR; PL ¼ PR:
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We call such problem the interface only problem for (2.1) and (2.2).

2.1. Error analysis for the first-order KFVS scheme

The first-order KFVS scheme for the Euler equations (2.1), (2.3) reads (cf. [16,20]):
~Wnþ1
j ¼ ~Wn

j � k Fn
jþ1=2 � Fn

j�1=2

h i
; ð2:4Þ
where ~Wn
j is the cell averaged value of ~W in the cell j at time nDt, Fn

j�1=2 are the numerical flux on the cell boundary at time
nDt which can be decomposed into
Fn
jþ1=2 ¼ Fn;þ

j þ Fn;�
jþ1; Fn

j�1=2 ¼ Fn;þ
j�1 þ Fn;�

j

with
Fn;�
j ¼ hu1ij;�

q
qU

qE

2
64

3
75

n

j

þ
0

Pn
j hu0ij;�

1
2 Pn

j hu1ij;� þ 1
2 Pn

j Un
j hu0ij;�

2
64

3
75
and
hu0ij;� ¼
1
2

erfc �
ffiffiffiffiffi
kn

j

q
Un

j

� �
;

hu1ij;� ¼ Un
j hu0ij;� �

1
2

e�kn
j ðU

n
j Þ

2ffiffiffiffi
p
p

kn
j

;

kn
j ¼

qn
j

2pn
j

;

In what follows in this section, we try to find the conditions that enable the contact discontinuity to still remain a contact
discontinuity, i.e. Unþ1

j ¼ Un
j and Pnþ1

j ¼ Pn
j for any j under the conditions that Un

j ¼ U0 and Pn
j ¼ P0, where P0 and U0 are

constants.
We first consider the conservation law of mass. By virtue of (2.4), the density at (n + 1)th time step can be expressed by

the value of the density and velocity at nth time step in the following form:
qnþ1
j ¼ qn

j � kððqUÞnjþ1=2 � ðqUÞnj�1=2Þ; ð2:5Þ
where
ðqUÞnjþ1=2 ¼ ðqUÞnj;þ þ ðqUÞnjþ1;� ¼ qn
j hu1ij;þ þ qn

jþ1hu1ijþ1;�;

ðqUÞnj�1=2 ¼ ðqUÞnj�1;þ þ ðqUÞnj;� ¼ qn
j�1hu1ij�1;þ þ qn

j hu1ij;�:
Substituting the above identities into (2.5), we thus obtain
qnþ1
j ¼ qn

j � k qn
jþ1hu1ijþ1;� þ qn

j hu1ij;þ � qn
j hu1ij;� � qn

j�1hu1ij�1;þ

h i
: ð2:6Þ
To study the oscillation mechanism of the velocity and the pressure near the contact discontinuity, we assume that the
density obtained by (2.6) are correct. Under this assumption, we then investigate the numerical errors of the velocity ob-
tained by the conservation law of momentum. By virtue of (2.4), the momentum at time ðnþ 1ÞDt can be expressed by
the value of the momentum, density, velocity and pressure at time nDt in the following form:
ðqUÞnþ1
j ¼ ðqUÞnj � k ðqU2 þ PÞnjþ1=2 � ðqU2 þ PÞnj�1=2

� �
; ð2:7Þ
where
ðqU2 þ PÞnjþ1=2 ¼ ðqU2 þ PÞnj;þ þ ðqU2 þ PÞnjþ1;�

¼ qn
j Un

j hu1ij;þ þ qn
jþ1Un

jþ1hu1ijþ1;� þ Pn
j hu0ij;þ þ Pn

jþ1hu0ijþ1;�;

ðqU2 þ PÞnj�1=2 ¼ ðqU2 þ PÞnj�1;þ þ ðqU2 þ PÞnj;�
¼ qn

j�1Un
j�1hu1ij�1;þ þ qn

j Un
j hu1ij;� þ Pn

j�1hu0ij�1;þ þ Pn
j hu0ij;�:
Hence, Unþ1
j is given by
Unþ1
j ¼ 1

qnþ1
j

ðqUÞnj � k qn
j Un

j hu1ij;þ þ qn
jþ1Un

jþ1hu1ijþ1;� þ Pn
j hu0ij;þ þ Pn

jþ1hu0ijþ1;�

� �hn

� qn
j�1Un

j�1hu1ij�1;þ þ qn
j Un

j hu1ij;� þ Pn
j�1hu0ij�1;þ þ Pn

j hu0ij;�
� �i
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Since Un
j ¼ U0 ¼ const:, Pn

j ¼ P0 ¼ const: for all j, we have from the above identity that
Unþ1
j ¼ U0

qnþ1
j

qn
j � k qn

j hu1ij;þ þ qn
jþ1hu1ijþ1;� � qn

j�1hu1ij�1;þ � qn
j hu1ij;�

h in o

� kP0

qnþ1
j

hu0ij;þ þ hu0ijþ1;� � hu0ij�1;þ � hu0ij;�
n o

: ð2:8Þ
Substituting qnþ1
j from (2.6) into (2.8), we find that
Unþ1
j ¼ U0 � e0k

P0

qnþ1
j

; ð2:9Þ
where
e0 ¼ hu0ij;þ þ hu0ijþ1;� � hu0ij�1;þ � hu0ij;�:
Next, we study the oscillatory phenomenon of the pressure. For this purpose, we assume that the computed velocity re-
mains uniform across the contact discontinuity, i.e., Unþ1

j ¼ U0. Under this assumption, we then investigate numerical errors
of the pressure in the vicinity of the contact discontinuity. Let us consider the conservation law of energy from which the
discrete pressure is computed. By virtue of (2.4), the total energy at (n + 1)th time step can be expressed by the value of
the total energy, density, velocity and pressure at nth time step in the following form:
ðqEÞnþ1
j ¼ ðqEÞnj � k ðqEU þ PUÞnjþ1

2
� ðqEU þ PUÞnj�1

2

� �
; ð2:10Þ
where
ðqEU þ PUÞnjþ1=2 ¼ ðqEÞnj hu1ij;þ þ
1
2

Pn
j hu1ij;þ þ

1
2

Pn
j Un

j hu0ij;þ þ ðqEÞnjþ1hu1ijþ1;� þ
1
2

Pn
jþ1hu1ijþ1;� þ

1
2

Pn
jþ1Un

jþ1hu0ijþ1;�;

ðqEU þ PUÞnj�1=2 ¼ ðqEÞnj�1hu1ij�1;þ þ
1
2

Pn
j�1hu1ij�1;þ þ

1
2

Pn
j�1Un

j�1hu0ij�1;þ þ ðqEÞnj hu1ij;� þ
1
2

Pn
j hu1ij;� þ

1
2

Pn
j Un

j hu0ij;�:
In view of (2.2), we may write
qE ¼ qeþ 1
2
qU2 ¼ P

ðc� 1Þ þ
1
2
qU2: ð2:11Þ
Inserting the above relation into (2.10), we see that
ðqEÞnþ1
j ¼ P

c� 1
þ 1

2
qU2

� �n

j

� k
P

c� 1
þ 1

2
qU2

� �n

j

hu1ij;þ þ
1
2

Pn
j hu1ij;þ þ

1
2

Pn
j Un

j hu0ij;þ

"(

þ P
c� 1

þ 1
2
qU2

� �n

jþ1
hu1ijþ1;� þ

1
2

Pn
jþ1hu1ijþ1;� þ

1
2

Pn
jþ1Un

jþ1hu0ijþ1;�

#

� P
c� 1

þ 1
2
qU2

� �n

j�1
hu1ij�1;þ þ

1
2

Pn
j�1hu1ij�1;þ þ

1
2

Pn
j�1Un

j�1hu0ij�1;þ

"

þ P
c� 1

þ 1
2
qU2

� �n

j
hu1ij;� þ

1
2

Pn
j hu1ij;� þ

1
2

Pn
j Un

j hu0ij;�

#)

¼ 1
2

U2
0 qn

j � k qn
jþ1hu1ijþ1;� þ qn

j hu1ij;þ � qn
j hu1ij;� � qn

j�1hu1ij�1;þ

� �h i
þ P0

c� 1
� k

1
c� 1

þ 1
2

� �
P0 hu1ijþ1;� þ hu1ij;þ � hu1ij;� � hu1ij�1;þ

� �

� k
2

P0U0 hu0ijþ1;� þ hu0ij;þ � hu0ij;� � hu0ij�1;þ

� �
¼ 1

2
U2

0q
nþ1
j þ P0

ðc� 1Þ � k
1
2

P0U0e0 � k
1

c� 1
þ 1

2

� �
P0e1 ð2:12Þ
with
e1 ¼ hu1ijþ1;� þ hu1ij;þ � hu1ij;� � hu1ij�1;þ;

e0 ¼ hu0ijþ1;� þ hu0ij;þ � hu0ij;� � hu0ij�1;þ:
By (2.12) and (2.11) from which Pnþ1
j can be calculated, and (2.9) that gives Unþ1

j , we find that if the following conditions
hold:
e0 ¼ 0; e1 ¼ 0; ð2:13Þ
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then, across the contact discontinuity, the pressure and velocity satisfy
Pnþ1
j ¼ Pn

j ¼ P0; Unþ1
j ¼ Un

j ¼ U0:
That means that if (2.13) is satisfied, then there will be no spurious oscillations present in the pressure and velocity in the
vicinity of the contact discontinuity.

2.2. Error analysis for the first-order BGK scheme

In this section, we will analyze the numerical error of the BGK scheme across the contact discontinuity. According to
[15,20,22], the first-order BGK scheme can be written as
~Wnþ1
j ¼ ~Wn

j � k Fn;B
jþ1=2 � Fn;B

j�1=2

h i
; ð2:14Þ
where
Fn;B
jþ1=2 ¼ Fn;B;þ

j þ Fn;B;�
jþ1 ; Fn;B

j�1=2 ¼ Fn;B;þ
j�1 þ Fn;B;�

j :
It is also pointed out in [15,20,22] that the flux Fn;B
jþ1=2 of the BGK scheme can be decomposed into
Fn;B
jþ1=2 ¼ ð1� gÞFn;K

jþ1=2 þ gFn;E
jþ1=2 ð2:15Þ
with Fn;K
jþ1=2 being the flux of the KFVS scheme and Fn;E

jþ1=2 the equilibrium state which is constructed by the conservation quan-
tities on the both sides of a cell interface. More precisely, Fn;E

jþ1=2 has the following form:
q
qU

qE

2
64

3
75

n;E

jþ1=2

¼

qn;K
j hu0ij;þ þ qn;K

jþ1hu0ijþ1;�

qn;K
j hu1ij;þ þ qn;K

jþ1hu1ijþ1;�
1
2 qn;K

j Un;K
j hu1ij;þ þ 1

2 qn;K
jþ1Un;K

jþ1hu1ijþ1;� þ qn;K
j en;K

j hu0ij;þ þ qn;K
jþ1en;K

jþ1hu0ijþ1;�

2
664

3
775:
Next, we analyze numerical errors (oscillations) across the contact discontinuity by checking whether the scheme (2.14)
satisfies the (oscillation-free) conditions (2.20), (2.21). To this end, we easily deduce by a straightforward calculation that
across the cell interface on which the contact discontinuity is located,
ðqUÞn;Ejþ1=2 ¼ qn;K
j hu

1ij;þ þ qn;K
jþ1hu

1ijþ1;� ¼ qn;K
j Un;K

j hu
0ij;þ þ

1
2

e�kn;K
j
ðUn;K

j
Þ2ffiffiffiffiffiffiffiffiffiffiffi

pkn;K
j

q
0
B@

1
CAþ qn;K

jþ1 Un;K
jþ1hu

0ijþ1;� �
1
2

e�kn;K
jþ1
ðUn;K

jþ1
Þ2ffiffiffiffiffiffiffiffiffiffiffiffi

pkn;K
jþ1

q
0
B@

1
CA

:¼ qn;E
jþ1=2U0 þ qn;K

j ej � qn;K
jþ1ejþ1; ð2:16Þ
where
ej ¼
1
2

e�kn;K
j
ðUn;K

j
Þ2ffiffiffiffiffiffiffiffiffiffiffi

pkn;K
j

q

and
ðqEÞn;Ejþ1=2 ¼
1
2
qn;K

j Un;K
j hu

1ij;þ þ
1
2
qn;K

jþ1Un;K
jþ1hu

1ijþ1;� þ qn;K
j en;K

j hu
0ij;þ þ qn;K

jþ1en;K
jþ1hu

0ijþ1;�

¼ 1
2

U0ðqUÞn;Ejþ1=2 þ
P0

c� 1
ðhu0ij;þ þ hu0ijþ1;�Þ: ð2:17Þ
From (2.16) and (2.17), we easily get
Un;E
jþ1=2 ¼ U0 þ

qn;K
j ej;þ � qn;K

jþ1ejþ1;�

qn;E
jþ1=2
and
Pn;E
jþ1=2 ¼ ðc� 1Þ qE� 1

2
qU2

� �n;E

jþ1=2
¼ P0ðhu0ij;þ þ hu0ijþ1;�Þ þ ðc� 1Þ 1

2
U0ðqUÞn;Ejþ1=2 �

1
2

Un;E
jþ1=2ðqUÞn;Ejþ1=2

� �

¼ P0ðhu0ij;þ þ hu0ijþ1;�Þ þ
1
2
ðc� 1ÞðqUÞn;Ejþ1=2ðU0 � Un;E

jþ1=2Þ:
Therefore, we have
ðPUÞn;Ejþ1=2 ¼ P0U0ðhu0ij;þ þ hu0ijþ1;�Þ þ U0
1
2
ðc� 1ÞðqUÞn;Ejþ1=2ðU0 � Un;E

jþ1=2Þ þ Pn;E
jþ1=2

ðqn;K
j ej � qn;K

jþ1ejþ1Þ
qn;E

jþ1=2

:
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By combing Pn;K
jþ1=2; P

n;E
jþ1=2; ðPUÞn;Kjþ1=2 and ðPUÞn;Ejþ1=2, we obtain immediately
Pn;B
jþ1=2 ¼ ð1� gÞPn;K

jþ1=2 þ gPn;E
jþ1=2 ¼ P0 þ P0ðhu0ij;þ þ hu0ijþ1;� � 1Þ þ g

1
2
ðc� 1ÞðqUÞn;Ejþ1=2ðU0 � Un;E

jþ1=2Þ ð2:18Þ
and because
ðPUÞn;K
jþ1

2
¼ 1

2
½Pn;K

j hu
1ij;þ þ Pn;K

jþ1hu
1ijþ1;� þ Pn;K

j Un;K
j hu

0ij;þ þ Pn;K
jþ1Un;K

jþ1hu
0ijþ1;��

¼ 1
2

P0ðhu1ij;þ þ hu1ijþ1;�Þ þ
1
2

P0U0ðhu0ij;þ þ hu0ijþ1;�Þ

¼ 1
2

P0ðU0hu0ij;þ þ ej þ U0hu0ijþ1;� � ejþ1Þ þ
1
2

P0U0ðhu0ij;þ þ hu0ijþ1;�Þ ¼ P0U0ðhu0ij;þ þ hu0ijþ1;�Þ þ
1
2

P0ðej � ejþ1Þ
we have
ðPUÞn;Bjþ1=2¼ð1�gÞðPUÞn;Kjþ1=2þgðPUÞn;Ejþ1=2

¼ P0U0ðhu0ij;þ þhu0ijþ1;�Þþ
ð1�gÞ

2
P0ðej�ejþ1Þþg U0

1
2
ðc�1ÞðqUÞn;Ejþ1=2ðU0�Un;E

jþ1=2ÞþPn;E
jþ1

2

qn;K
j ej�qn;K

jþ1ejþ1

qn;E
jþ1=2

 !
:

ð2:19Þ
Thus, by virtue of (2.18) and (2.19), Pnþ1
j ¼ P0 and Unþ1

j ¼ U0 for any j if the following conditions are satisfied:
P0ðhu0ij;þ þ hu0ijþ1;� � 1Þ þ g
1
2
ðc� 1ÞðqUÞn;E

jþ1
2
ðU0 � Un;E

jþ1
2
Þ ¼ 0; ð2:20Þ

P0U0ðhu0ij;þ þ hu0ijþ1;� � 1Þ þ ð1� gÞ
2

P0ðej � ejþ1Þ þg U0
1
2
ðc�1ÞðqUÞn;Ejþ1=2ðU0 �Un;E

jþ1=2Þ þ Pn;E
jþ1=2

qn;K
j ej �qn;K

jþ1ejþ1

qn;E
jþ1=2

 !
¼ 0:

ð2:21Þ
From (2.20) and (2.21), we easily see that it is difficult to choose a suitable g satisfying simultaneously the above two
equations. That means that certain oscillation across the contact discontinuity, although very small in amplitude, would
be present in the first-order BGK scheme and could persist with refinement of meshes. On the other hand, our numerical
examples show that the numerical errors of the BGK scheme near the contact discontinuity are smaller than those of the
KFVS scheme. From the view point of kinetic theory, it is known that the real state of the contact discontinuity should lie
between the collisionless and the equilibrium states. Consequently, g should be in ½0;1�. However, the choice of g is problem-
and the user’s experience-dependent.
3. Modified KFVS schemes

According to the analysis in Section 2, we see that across the contact discontinuity, if UL ¼ UR ¼ U0; PL ¼ PR ¼ P0 at t ¼ tn,
then the conditions (2.13) guarantee no oscillation at t ¼ tnþ1. There may be many choices to make (2.13) hold, and next we
give the conditions (i.e. (3.2)) that imply (2.13) and more reasonable.

In fact, if across the contact discontinuity, Pn
j ¼ Pn

jþ1 ¼ P0 and Un
j ¼ Un

jþ1 ¼ U0, then the following fluxes across the contact
discontinuity have to satisfy the following equations:
Pn
jþ1=2 ¼ P0; Pn

jþ1=2Un
jþ1

2
¼ P0U0: ð3:1Þ
We call (3.1) the consistent conditions. Then, we have under (3.1) that
Pn
jþ1=2 ¼ Pn

j hu0ij;þ þ Pn
jþ1hu0ijþ1;� ¼ P0;

Pn
jþ1=2Un

jþ1=2 ¼ Pn
j hu1ij;þ þ Pn

jþ1hu1ijþ1;� ¼ P0U0;
from which it follows that
hu0ij;þ þ hu0ijþ1;� ¼ 1;

hu1ij;þ þ hu1ijþ1;� ¼ U0:
ð3:2Þ
It is easy to see that the conditions (2.13) may not imply (3.1) in the vicinity of the contact discontinuity, while (3.2) do
guarantee (3.1). Therefore, the conditions (3.2) are in general more reasonable than (2.13). Thus, we will modify the KFVS
scheme using (3.2).

As aforementioned, if the consistent conditions hold, then the spurious oscillation (numerical error) will vanish. In view of
the above analysis and in order to diminish oscillations across the contact discontinuity, we modify the first-order KFVS
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scheme by replacing hu0;1ij;� in the fluxes in (2.4) by appropriate values to propose a new KFVS scheme of first order without
oscillations across the contact discontinuity, which is described in the following.

The value of the conservative variables at (n + 1)th time step is given by
Fig. 1(a
pressur

Fig. 1(b
pressur
~Wnþ1
j ¼ ~Wn

j � k½Fn
jþ1=2 � Fn

j�1=2�; ð3:3Þ
where
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). Example 5.1: Computed results at t ¼ 0:3 by the first-order BGK, KFVS and MKFVS schemes with 10 uniform cells. Left: the velocity; Right: the
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with
Fig.
hu0i�j;� ¼
1
2

erfc �
ffiffiffiffiffiffiffi
kn;�

j;�

q
Un

j

� �
; hu1i�j;� ¼ Un

j hu0i�j;� �
1
2

e�kn;�
j;�ðU

n
j Þ

2ffiffiffiffi
p
p

kn;�
j;�

; ð3:4Þ
where
kn;�
j;þ ¼

qn
j þ qn

jþ1

4Pn
j

; kn;�
j;� ¼

qn
j þ qn

j�1

4Pn
j

: ð3:5Þ
Inserting (3.5) into (3.4), we easily see that for our modified scheme, the conditions (3.2) hold. Hence, the consistent con-
ditions (3.1) are satisfied for the modified scheme. We call the above scheme the modified KFVS scheme (MKFVS) of first
order.

Remark 3.1. In the derivation of the first-order MKFVS scheme, in order to satisfy the consistent conditions (3.1), it suffices
to make kn;�

j;þ ¼ kn;�
jþ1;�, from which we deduce the formula (3.5).
2(a). Example 5.1: Computed results at t ¼ 0:3 by the three first-order schemes with 100 uniform cells. (a) Velocity; (b) Pressure; (c) Density.



3590 Y. Chen, S. Jiang / Journal of Computational Physics 228 (2009) 3582–3604
It is straightforward to extend our first-order scheme to a second-order one. Here we show how to construct a second-
order MKFVS scheme. In the case of first-order accuracy, the distribution of the physical quantities is piecewise-constant
within each cell. To reach second-order accuracy, instead of the constant distribution, we only need to reconstruct piecewise
linear distribution of the physical quantities within each cell:
a

Fig. 2
W ðkÞ
j ðxÞ ¼W ðkÞ

j þ
@W ðkÞ

@x
x� xjþ1

2

� �
; x 2 ðxj; xjþ1Þ; ð3:6Þ
where W ðkÞ
j is the kth component of W

*

j.
To avoid spurious oscillations across strong discontinuities, we employ van Leer’s limiter to construct the slope:
Lðs; rÞ ¼ ðsignðsÞ þ signðrÞÞ sr
jsj þ jrj ;
where
s ¼
W ðkÞ

jþ1 �W ðkÞ
j

xjþ1 � xj
; r ¼

W ðkÞ
j �W ðkÞ

j�1

xj � xj�1
:

Then, the reconstructed linear distribution of the physical quantities in the cell j is taken to be
W ðkÞ
j ðxÞ ¼W ðkÞ

j þ Lðs; rÞðx� xjþ1=2Þ; x 2 ðxj; xjþ1Þ
and the new physical quantities at two boundary nodes of the cell j are given by
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(b). Example 5.1: Computed results at t ¼ 0:3 by the three second-order schemes with 100 uniform cells. (a) Velocity; (b) Pressure; (c) Density.
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W ðkÞ
j;þ ¼W ðkÞ

j þ Lðs; rÞ � ðxjþ1 � xjþ1=2Þ; W ðkÞ
j;� ¼W ðkÞ

j � Lðs; rÞ � ðxjþ1=2 � xjÞ;
where W ðkÞ
j;þ and W ðkÞ

j;� represent the value of the physical quantities at the right and left boundary nodes of the cell j,
respectively.

Using this piecewise linear reconstruction, we can construct the numerical fluxes at a cell interface in the same manner as
for the first-order scheme. Hence, our modified second-order (oscillation-free) KFVS scheme is written as follows:
~Wnþ1
j ¼ ~Wn

j � k Fn
jþ1=2 � Fn

j�1=2

h i
ð3:7Þ
with
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). Example 5.2: Computed results at t ¼ 1:0 by the first-order BGK, FKVS and MFKVS schemes with 500 uniform cells. Left: Velocity; Right: Pressure.
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where
Fig. 4(

Fig. 4(
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Instead of the forward difference in time in (3.7), we may use the second-order Runge–Kutta algorithm in the time dis-
cretization and obtain the following scheme which is of second-order accuracy both in time and in space:
~W�
j ¼ ~Wn

j � k Fjþ1=2ð~WnÞ � Fj�1=2ð~WnÞ
h i
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2

k Fjþ1=2ð~W�Þ � Fj�1=2ð~W�Þ
h i

:
ð3:8Þ
a). Example 5.2: Close-up of the velocity and the pressure in the vicinity of the contact discontinuity in Fig. 3(a). Left: Velocity; Right: Pressure.
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b). Example 5.2: Close-up of the velocity and the pressure in the vicinity of the contact discontinuity in Fig. 3(b). Left: Velocity; Right: Pressure.
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4. Extension to multi-fluids

Following Abgrall’s work [1,2], we extend our first- and second-order MKFVS schemes constructed in the last section to
multi-fluids. Consider the Euler equations (2.1), (2.2) for two fluids with different ratios of specific heats c. Then, the fluid
interface is described by the contact discontinuity of c, and the motion of the fluid interface is governed by
Fig. 5(a

Fig. 5(b
Pressur
ct þ Ucx ¼ 0: ð4:1Þ
As analyzed in [1,2], to diminish possible spurious oscillations across the fluid interface, instead of (4.1), we should use the
equation
1
c� 1

� 	
t

þ U
1

c� 1

� 	
x

¼ 0 ð4:2Þ
to capture the fluid interface.
). Example 5.3: Computed results at t ¼ 1:0 by the first-order BGK, KFVS and MKFVS schemes with 500 uniform cells. Left: Velocity; Right: Pressure.

X

V
el

o
ci

ty

-3 -2 -1 0 1 2 3
0

0.5

1

1.5 EXACT
BGK
KFVS
MKFVS

X

P
re

ss
u

re

-3 -2 -1 0 1 2 3

1

1.5

2

2.5

3

3.5
EXACT
BGK
KFVS
MKFVS

). Example 5.3: Computed results at t ¼ 1:0 by the second-order BGK, KFVS and MKFVS schemes with 500 uniform cells. Left: Velocity; Right:
e.



3594 Y. Chen, S. Jiang / Journal of Computational Physics 228 (2009) 3582–3604
By numerically solving the coupled equations (2.1), (2.2) and (4.2), we can find the location of the fluid interface as the
discontinuity of c at any time. In this section, we apply the first- and second-order MKFVS schemes to the coupled system
(2.1), (2.2) and (4.2), and propose therefore the first- and second-order MKFVS schemes for multi-fluid computations.

To analyze possible oscillations across the fluid interface, we consider the interface only problem for (2.1), (2.2) and (4.2)
with initial data
~Wðx;0Þ ¼
ðqL;qLUL;qLEL; cLÞ; x < 0;
ðqR;qRUR;qRER; cRÞ; x > 0;

�
ð4:3Þ
where
qL – qR; cL – cR; UL ¼ UR ¼ U0 ¼ const:; PL ¼ PR ¼ P0 ¼ const::
We apply the first-order MKFVS scheme to solve (2.1), (2.2), (4.2) and (4.3), and obtain the first-order MKFVS scheme for
multi-fluids. To analyze possible oscillations for this scheme, we deduce in the same manner as for the KFVS scheme in Sec-
tion 2 to obtain, after omitting the superscript of � for simplicity, that
Fig. 6(a). Example 5.3: Close-up in the vicinity of the contact discontinuity in Fig. 5(a). Left: Velocity; Right: Pressure.
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a). Example 5.4: Surface plots of the density. Top left: Exact solution; Top right: first-order BGK scheme; Bottom left: first-order KFVS scheme;
right: first-order MKFVS scheme.



Fig. 7(1b). Example 5.4: Surface plots of the pressure. Top left: Exact solution; Top right: first-order BGK scheme; Bottom left: first-order KFVS scheme;
Bottom right: first-order MKFVS scheme.
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with
e1 ¼ hu1ijþ1;� þ hu1ij;þ � hu1ij;� � hu1ij�1;þ and

e0 ¼ hu0ijþ1;� þ hu0ij;þ � hu0ij;� � hu0ij�1;þ:
For the MKFVS scheme of first order, one has
e1 ¼ e0 ¼ 0; ð4:5Þ
which implies Pnþ1
j ¼ P0. Hence, the discretization of Eq. (4.2) using the first-order MKFVS scheme becomes



Fig. 7(1c). Example 5.4: Surface plots of the density. Top left: Exact solution; Top right: second-order BGK scheme; Bottom left: first-order KFVS scheme;
Bottom right: first-order MKFVS scheme.
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The formula (4.6) can be considered as a discretization of the equation
1
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t

þ U
c� 1

� 	
x

¼ 0;
but not the interface capturing equation (4.2). This means that the disrectization (4.6) cannot give the correct approximate
solution of (4.2). To remedy this fault, we rewrite (4.2) as follows:
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and discretize (4.7), instead of using (4.6), as follows:
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Fig. 7(1d). Example 5.4: Surface plots of the pressure. Top left: Exact solution; Top right: second-order BGK scheme; Bottom left: second-order KFVS
scheme; Bottom right: second-order MKFVS scheme.
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which is in fact identical to (4.6) in the case that the solution of (2.1), (2.2) and (4.2) consists of only one fluid interface.
Therefore, we have proposed a discrete scheme (4.8) for Eq. (4.2) and the scheme is consistent with (4.5). Consequently,
the ratio of specific heats c obtained by solving (4.8) should be oscillation-free across the fluid interface.

Finally, a second-order scheme for multi-fluids can be constructed in a similar way (cf. Section 3), although the calcula-
tions involved are more tedious.

5. Numerical experiments

In this section we will compare the KFVS scheme, the BGK scheme and the MKFVS scheme in the following tests. In Exam-
ples 5.1–5.4 and we will compare three schemes the KFVS, BGK and MKFVS schemes for single fluids. We take g ¼ 0:7 for the
first-order BGK scheme, while all the parameters in the second-order BGK scheme are from ([20, Chapter 4.2]). In Examples
5.5 and 5.6 we test the current schemes for multi-fluid computations. For the sake of simplicity, we only compare the first-
and second-order KFVS and MKFVS schemes, more numerical examples will be tested in the future.

Example 5.1. The first test is an interface only problem with initial data:
ðq;U; PÞ ¼
ð1;2;1Þ for x > 0;
ð0:1;2;1Þ for x < 0:

�



Fig. 8(a). Example 5.5: Computed results at t ¼ 1:0 by the first-order KFVS and MKFVS schemes with 500 uniform cells. Left: Velocity; Right: Pressure.

Fig. 8(b). Example 5.5: Computed results at t ¼ 1:0 by the second-order KFVS and MKFVS schemes with 300 uniform cells. Left: Velocity; Right: Pressure.

Fig. 8(c). Example 5.5: Computed c by the KFVS and MKFVS schemes. Left: first-order schemes; Right: second-order schemes.
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Fig. 9(a). Example 5.5: Close-up of the velocity and the pressure in the vicinity of the contact discontinuity in Fig. 8(a). Left: Velocity; Right: Pressure

Fig. 9(b). Example 5.5: Close-up of the velocity and the pressure in the vicinity of the contact discontinuity in Fig. 8(b). Left: Velocity; Right: Pressure.
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The exact solution for this problem is constant velocity and the pressure. Fig. 1(a) shows the simulation results of the velocity
and the pressure using three first-order schemes at one time step with 10 uniform cells, and Fig. 1(b) shows the results of
three second-order schemes. It is obvious to see that the BGK and KFVS schemes produce oscillations near the contact dis-
continuity, although the second-order schemes get better resolution than the first-order schemes, the oscillations do not
vanish. At the same time, the first- and second-order MKFVS scheme do not produce any oscillation. Figs. 2(a) and 2(b) give
the numerical results with 100 cells at t ¼ 0:3. We clearly observe that as the grid is refined, the accuracy is getting im-
proved, the oscillations will not vanish, although they become smaller. On the other hand, the MKFVS schemes have no oscil-
lation across the contact discontinuity. We should point out here that if the parameter such g in the first-order case is
appropriately chosen, the oscillation induced by the BGK schemes could diminish. But, how to choose an appropriate param-
eter is problem- and user’s experience-dependent.

Example 5.2 (Sod’s shock problem [18]). In this calculation, the length of the numerical domain is equal to 6, and 500 cells
are used for the first-order scheme while 300 cells are used for the second-order scheme. The initial data are
ðq;U; EÞ ¼
ð1; 0;1Þ for x > 0;
ð0:125;0;2Þ for x < 0:

�

The simulation results are given in Figs. 3(a) and 3(b) for the velocity and the pressure at t ¼ 1:0 where the solid line is the
exact solution. Here we see that all the three schemes perform well. However, if we look at the close-up of the numerical
results in the vicinity of the contact discontinuity in Figs. 4(a) and 4(b), we observe that the BGK and KFVS schemes still
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produce some oscillations near the contact discontinuity, while no oscillation is found for the MKFVS scheme. Although the
oscillations of the BGK and KFVS scheme diminish when the accuracy is improved, they will not vanish. And it is obvious that
the BGK scheme is less oscillatory than the KFVS scheme. As mentioned before, we numerically find that the oscillation in the
BGK scheme could be diminished, if the parameter g is very carefully chosen.

Example 5.3 (Lax’s shock problem [7]). In this test the length of the numerical domain is equal to 6, and 500 uniform cells are
used for the first-order schemes while 300 cells are used for the second-order schemes. The initial data are
Fig. 10(
KFVS sc
ðq;U; PÞ ¼
ð0:445;0:6989;3:5277Þ for x < 0;
ð0:5;0;0:571Þ for x > 0:

�

Figs. 5(a) and 5(b) show the contours of the velocity and the pressure at t ¼ 1:0 of three schemes, and the solid line is the
exact solution, while Figs. 6(a) and 6(b) give the close-up of the velocity and the pressure in the vicinity of the contact dis-
continuity. From Figs. 5 and 6, we draw the same conclusion as in Example 5.2.

Example 5.4 (2D interface only problem). Here, we design a two-dimensional interface only problems to compare the three
schemes with 100� 100 uniform cells. The initial distribution is given by
a). Example 5.6: Surface plots of the density. Top left: first-order KFVS scheme; Top right: first-order MKFVS scheme; Bottom left: second-order
heme; Bottom right: second-order MKFVS scheme.



Fig. 10(b). Example 5.6: Surface plots of the pressure. Top left: first-order KFVS scheme; Top right: first-order MKFVS scheme; Bottom left: second-order
KFVS scheme; Bottom right: second-order MKFVS scheme.

Fig. 10(c). Example 5.6: Surface plots of c. Top left: first-order KFVS scheme; Top right: first-order MKFVS scheme; Bottom left: second-order KFVS scheme;
Bottom right: second-order MKFVS scheme.
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ðq; u;v ; PÞ ¼
ð2;1;1;1Þ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððx� 0:2Þ2 þ ðy� 0:2Þ2Þ

q
< 0:1;

ð1;1;1;1Þ;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððx� 0:2Þ2 þ ðy� 0:2Þ2Þ

q
> 0:1

8><
>:
and the corresponding exact solution at t ¼ 0:3 is given by
ðq; u;v ; PÞ ¼
ð2;1;1;1Þ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððx� 0:5Þ2 þ ðy� 0:5Þ2Þ

q
< 0:1;

ð1;1;1;1Þ;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððx� 0:5Þ2 þ ðy� 0:5Þ2Þ

q
> 0:1:

8><
>:
Figs. 7(1a) and 7(1c) show the computed results using the first-order schemes, while Figs. 7(1b) and 7(1d) give the com-
puted results using the second-order schemes. In Figs. 7(1a) and 7(1b) the density distribution is shown, and it is obvious
that the second-order schemes resolve sharper than the first-order ones. The pressure distribution is given in Figs. 7(1c)
and 7(1d), from which we find that the BGK and KFVS schemes produce oscillations that will not vanish as the accuracy
is improved. On the other hand, the first- and second-order MKFVS schemes keep a good resolution for the velocity and
pressure.

In the following two examples, we test our MFKVS schemes for multi-fluid computations.

Example 5.5 (1D multi-fluid problem). In this example, we use the MKFVS scheme constructed in Section 4 to simulate a 1D
multi-fluid problem. Since our MKFVS is modified from the KFVS scheme, we compare the MKFVS scheme with the KFVS
scheme. In this calculation, the length of the numerical domain is equal to 6, and 500 cells are used for the first-order scheme
while 300 cells are used for the second-order scheme. The initial data read
ðq;U; P; cÞ ¼
ð1;0;1;1:4Þ for x > 0;
ð0:125;0;0:1;1:9Þ for x < 0:

�

In Fig. 8(a) the velocity and pressure computed by the first-order KFVS and MKFVS schemes are shown, while in Fig. 8(b)
the numerical results using the second-order schemes are given, and in Fig. 8(c) the results of c using all the four schemes are
presented. Figs. 9(a) and 9(b) show the close-up of the numerical results in the vicinity of the contact discontinuity. In gen-
eral, both schemes performs well. However, comparing with the exact solution, the second-order schemes perform clearly
better than the first-order ones, the KFVS schemes produce small oscillations near the fluid interface, while the MKFVS give
the exact solution. This demonstrates that the second-order MKFVS scheme also works well for multi-fluid problems.

Example 5.6 (2D interface only problem). Here, we extend a two-dimensional interface only problems to a multi-fluid to
compare the MKFVS and KFVS schemes. The initial distribution is given by
ðq; u;v ; P; cÞ ¼
ð2;1;1;1;1:4Þ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððx� 0:2Þ2 þ ðy� 0:2Þ2Þ

q
< 0:1;

ð1;1;1;1;1:9Þ;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððx� 0:2Þ2 þ ðy� 0:2Þ2Þ

q
> 0:1

8><
>:
and the corresponding exact solution at t ¼ 0:3 is
ðq; u;v ; P; cÞ ¼
ð2;1;1;1;1:4Þ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððx� 0:5Þ2 þ ðy� 0:5Þ2Þ

q
< 0:1;

ð1;1;1;1;1:9Þ;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððx� 0:5Þ2 þ ðy� 0:5Þ2Þ

q
> 0:1:

8><
>:
The computation domain is ½0;1� � ½0;1�, a 100� 100 uniform grid is used.
Figs. 10(a), 10(b), 10(c) are the numerical results computed by the first- and second-order KFVS and MKFVS schemes. In

general, both schemes work well for this multi-fluid problem. But, from Figs. 10(a) and 10(c) where the density and c
distributions are given, it is obvious to observe that the second-order schemes resolve the fluid interface apparently sharper
than the first-order ones. Fig. 10(b) is the pressure distribution, we find that both the first- and second-order KFVS schemes
produce small oscillations near the fluid interface and the oscillations will not vanish as the accuracy is improved, while
there is no oscillation for the first- and second-order MKFVS schemes. This also shows that our second-order MKFVS scheme
performs well for multi-fluid problems.
6. Conclusion

In this paper, based on a careful study of the behavior of the discrete physical variables across the contact discontinuity,
we have analyzed quantitatively the mechanism of inducing spurious oscillations of the velocity and the pressure in the
vicinity of the contact discontinuity for the first-order kinetic flux vector splitting (KFVS) and BGK schemes for compressible
flows, and found that if certain consistent conditions hold, then the spurious oscillations vanish. Then, with the help of this
analysis, we have proposed a first-order modified KFVS (MKFVS) scheme which is oscillation-free in the vicinity of the con-
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tact discontinuity. Furthermore, by employing piecewise linear reconstruction of the initial data and van Leer’s limiter, the
first-order MKFVS scheme is extended to a second-order one, and consequently, we have constructed a nonoscillatory sec-
ond-order MKFVS scheme. Finally, by combing the MKFVS schemes with the c-model, we have successfully extended the
MKFVS schemes to multi-flows and proposed therefore a first- and second-order MKFVS schemes for multi-fluid simulations,
which are also nonoscillatory across fluid interfaces. We have carried out a number of tests inclusive of multi-fluid problems.
The numerical results validate the theoretic analysis and demonstrate the good performance of the MKFVS schemes in the
simulation of contact discontinuities for both single- and multi-fluids. Moreover, the second-order MKFVS scheme resolves
shock waves clearly better than the first-order one. This demonstrates that after an appropriate modification of the original
first- and second-order KFVS schemes, the modified schemes become more credible and robust.
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